Source code for ogzaf.macro_params

"""
This module uses data from World Bank WDI, World Bank Quarterly Public
Sector Debt (QPSD) database, the IMF, and UN ILO to find values for
parameters for the OG-ZAF model that rely on macro data for calibration.
"""

# imports
from pandas_datareader import wb
import pandas as pd
import numpy as np
import requests
import datetime
import statsmodels.api as sm
from io import StringIO


[docs] def get_macro_params( data_start_date=datetime.datetime(1947, 1, 1), data_end_date=datetime.datetime(2024, 12, 31), country_iso="ZAF", update_from_api=False, ): """ Compute values of parameters that are derived from macro data Args: data_start_date (datetime): start date for data data_end_date (datetime): end date for data country_iso (str): ISO code for country Returns: macro_parameters (dict): dictionary of parameter values """ # initialize a dictionary of parameters macro_parameters = {} # baseline date formatted for World Bank data baseline_YYYYQ = ( str(data_end_date.year) + "Q" + str(pd.Timestamp(data_end_date).quarter) ) """ Retrieve data from the World Bank World Development Indicators. """ # Dictionaries of variables and their corresponding World Bank codes # Annual data wb_a_variable_dict = { "GDP per capita (constant 2015 US$)": "NY.GDP.PCAP.KD", "Real GDP (constant 2015 US$)": "NY.GDP.MKTP.KD", "Nominal GDP (current US$)": "NY.GDP.MKTP.CD", "General government final consumption expenditure (current US$)": "NE.CON.GOVT.CD", } # Quarterly data wb_q_variable_dict = { "Gross PSD USD - domestic creditors": "DP.DOD.DECD.CR.PS.CD", "Gross PSD USD - external creditors": "DP.DOD.DECX.CR.PS.CD", "Gross PSD Gen Gov - percentage of GDP": "DP.DOD.DECT.CR.GG.Z1", } if update_from_api: try: # pull series of interest from the WB using pandas_datareader # Annual data wb_data_a = wb.download( indicator=wb_a_variable_dict.values(), country=country_iso, start=data_start_date, end=data_end_date, ) wb_data_a.rename( columns=dict((y, x) for x, y in wb_a_variable_dict.items()), inplace=True, ) # Quarterly data wb_data_q = wb.download( indicator=wb_q_variable_dict.values(), country=country_iso, start=data_start_date, end=data_end_date, ) wb_data_q.rename( columns=dict((y, x) for x, y in wb_q_variable_dict.items()), inplace=True, ) # Remove the hierarchical index (country and year) of # wb_data_q and create a single row index using year wb_data_q = wb_data_q.reset_index() wb_data_q = wb_data_q.set_index("year") # Function to get the latest valid data if baseline_YYYYQ is missing or NaN def get_valid_data(series, baseline_YYYYQ): value = series.get(baseline_YYYYQ, None) if pd.isna(value): latest_non_nan = series.dropna().last_valid_index() if latest_non_nan is not None: print( f"Warning: No data for {baseline_YYYYQ}. Using last available quarter: {latest_non_nan}" ) value = series.get(latest_non_nan, None) else: print( "Warning: No historical data available. Skipping update." ) value = None return value # Compute macro parameters from WB data macro_parameters["initial_debt_ratio"] = get_valid_data( pd.Series(wb_data_q["Gross PSD Gen Gov - percentage of GDP"]) / 100, baseline_YYYYQ, ) print( f"initial_debt_ratio updated from World Bank API: {macro_parameters['initial_debt_ratio']}" ) # Compute initial_foreign_debt_ratio safely if ( "Gross PSD USD - external creditors" in wb_data_q.columns and "Gross PSD USD - domestic creditors" in wb_data_q.columns ): total_debt = ( wb_data_q["Gross PSD USD - domestic creditors"] + wb_data_q["Gross PSD USD - external creditors"] ) # Avoid division by zero wb_data_q["foreign_debt_ratio"] = wb_data_q[ "Gross PSD USD - external creditors" ] / total_debt.replace(0, np.nan) macro_parameters["initial_foreign_debt_ratio"] = ( get_valid_data( wb_data_q["foreign_debt_ratio"], baseline_YYYYQ ) ) else: print( "Warning: Missing debt variables in World Bank data. Skipping update for initial_foreign_debt_ratio." ) print( f"initial_foreign_debt_ratio updated from World Bank API: {macro_parameters['initial_foreign_debt_ratio']}" ) # Compute zeta_D safely macro_parameters["zeta_D"] = [ macro_parameters["initial_foreign_debt_ratio"] ] # Since it's the same formula, we use the same calculated value print( f"zeta_D updated from World Bank API: {macro_parameters['zeta_D']}" ) # Compute annual GDP growth safely if "GDP per capita (constant 2015 US$)" in wb_data_a.columns: g_y_series = wb_data_a[ "GDP per capita (constant 2015 US$)" ].pct_change(-1) # If all values are NaN, return None macro_parameters["g_y_annual"] = ( g_y_series.mean() if not g_y_series.isna().all() else None ) else: print( "Warning: Missing GDP per capita data in World Bank data. Skipping update for g_y_annual." ) print( f"g_y_annual updated from World Bank API: {macro_parameters['g_y_annual']}" ) except: print("Failed to retrieve data from World Bank") print("Will not update the following parameters:") print( "[initial_debt_ratio, initial_foreign_debt_ratio, zeta_D, g_y]" ) else: print("Not updating from World Bank API") """ Retrieve labour share data from the United Nations ILOSTAT Data API (see https://rshiny.ilo.org/dataexplorer9/?lang=en) The series code is SDG_1041_NOC_RT_A (capital share) Labor share (gamma) = 1 - capital share If this fails we will not update gamma in 'default_parameters.json' """ if update_from_api: try: target = ( "https://rplumber.ilo.org/data/indicator/" + "?id=SDG_1041_NOC_RT_A" + "&ref_area=" + str(country_iso) + "&timefrom=" + str(data_start_date.year) + "&timeto=" + str(data_end_date.year) + "&type=both&format=.csv" ) # Add headers headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36" } print("Attempting to update gamma from ILOSTAT") response = requests.get(target, headers=headers) if response.status_code != 200: print(f"Error: Received status code {response.status_code}") else: print("Request successful.") csv_content = StringIO(response.text) df_temp = pd.read_csv(csv_content) ilo_data = df_temp[["time", "obs_value"]] # find gamma, capital's share of income macro_parameters["gamma"] = [ 1 - ( ( ilo_data.loc[ ilo_data["time"] == data_end_date.year, "obs_value" ].squeeze() ) / 100 ) ] print( f"gamma updated from ILOSTAT API: {macro_parameters['gamma']}" ) except: print("Failed to retrieve data from ILOSTAT") print("Will not update gamma") else: print("Not updating from ILOSTAT API") """ Calibrate parameters from IMF data """ if update_from_api: # alpha_T, non-social security benefits as a fraction of GDP # source: https://data.imf.org/?sk=78d0bcc1-7a8f-44eb-8a2c-d4e472b8e64b&hide_uv=1 # alpha_T = Employment-related social benefits expense - Social security benefits expense macro_parameters["alpha_T"] = [0.36 - 0.0] # 2022 = 0.36 # alpha_G, gov't consumption expenditures as a fraction of GDP # source: https://data.imf.org/?sk=23ca1c1d-e6a5-4f18-bc2e-7e215837f971&hide_uv=1 # alpha_G = Expense - Interest expense - Social benefits expense macro_parameters["alpha_G"] = [0.324 - 0.047 - 0.036] # 2022 = 0.241 """" Esimate the discount on sovereign yields relative to private debt Follow the methodology in Li, Magud, Werner, Witte (2021) available at: https://www.imf.org/en/Publications/WP/Issues/2021/06/04/The-Long-Run-Impact-of-Sovereign-Yields-on-Corporate-Yields-in-Emerging-Markets-50224 discussion is here: https://github.com/EAPD-DRB/OG-ZAF/issues/22 Steps: 1) Generate modelled corporate yields (corp_yhat) for a range of sovereign yields (sov_y) using the estimated equation in col 2 of table 8 (and figure 3). 2) Estimate the OLS using sovereign yields as the dependent variable """ # # estimate r_gov_shift and r_gov_scale sov_y = np.arange(20, 120) / 10 corp_yhat = 8.199 - (2.975 * sov_y) + (0.478 * sov_y**2) corp_yhat = sm.add_constant(corp_yhat) mod = sm.OLS( sov_y, corp_yhat, ) res = mod.fit() # First term is the constant and needs to be divided by 100 to have # the correct unit. Second term is the coefficient macro_parameters["r_gov_shift"] = [-res.params[0] / 100] macro_parameters["r_gov_scale"] = [res.params[1]] # Report new values print(f"alpha_T updated from IMF data: {macro_parameters['alpha_T']}") print(f"alpha_G updated from IMF data: {macro_parameters['alpha_G']}") print( f"r_gov_shift updated from IMF data: {macro_parameters['r_gov_shift']}" ) print( f"r_gov_scale updated from IMF data: {macro_parameters['r_gov_scale']}" ) else: print("Not updating alpha_T, alpha_G, r_gov_shift, r_gov_scale") return macro_parameters