Output-Consumption Bridge

Output-Consumption Bridge#

input_output.py modules

ogphl.input_output#

ogphl.input_output.get_alpha_c(sam=           2018 Social Accounting Matrix for Philippines  amaiz  ...     row   total Code                                                             ...                 amaiz                                 Activities - Maize    0.0  ...     0.0     202 arice                                  Activities - Rice    0.0  ...     0.0     694 aocer                         Activities - Other cereals    0.0  ...     0.0       1 aoils                              Activities - Oilseeds    0.0  ...     0.0      91 aroot                                 Activities - Roots    0.0  ...     0.0      64 ...                                                  ...    ...  ...     ...     ... stax   Taxes - Sales, excise and/or value-added (prod...    0.0  ...     0.0     534 s-i                                   Savings-investment    0.0  ...   679.0    4954 dstk                                    Change in stocks    0.0  ...     0.0     -24 row                                        Rest of world    0.0  ...     0.0    8225 total                                              Total  202.0  ...  8225.0  148804  [106 rows x 107 columns], cons_dict={'Durables': ['cmach', 'coman', 'ccons'], 'Energy and water': ['cmine', 'celec', 'cwatr'], 'Food': ['cmaiz', 'crice', 'cocer', 'coils', 'croot', 'cvege', 'csugr', 'ctoba', 'ccott', 'cfrui', 'ccoff', 'cocrp', 'ccatt', 'cpoul', 'coliv', 'cfore', 'cfish', 'cfood', 'cbeve'], 'Non-durables': ['ctext', 'cwood', 'cchem', 'cnmet', 'cmetl'], 'Services': ['ctrad', 'ctran', 'chotl', 'ccomm', 'cfsrv', 'creal', 'cbsrv', 'cpadm', 'ceduc', 'cheal', 'cosrv']})[source]#

Calibrate the alpha_c vector, showing the shares of household expenditures for each consumption category

Parameters:
  • sam (pd.DataFrame) – SAM file

  • cons_dict (dict) – Dictionary of consumption categories

Returns:

Dictionary of shares of household expenditures

Return type:

alpha_c (dict)

ogphl.input_output.get_io_matrix(sam=           2018 Social Accounting Matrix for Philippines  amaiz  ...     row   total Code                                                             ...                 amaiz                                 Activities - Maize    0.0  ...     0.0     202 arice                                  Activities - Rice    0.0  ...     0.0     694 aocer                         Activities - Other cereals    0.0  ...     0.0       1 aoils                              Activities - Oilseeds    0.0  ...     0.0      91 aroot                                 Activities - Roots    0.0  ...     0.0      64 ...                                                  ...    ...  ...     ...     ... stax   Taxes - Sales, excise and/or value-added (prod...    0.0  ...     0.0     534 s-i                                   Savings-investment    0.0  ...   679.0    4954 dstk                                    Change in stocks    0.0  ...     0.0     -24 row                                        Rest of world    0.0  ...     0.0    8225 total                                              Total  202.0  ...  8225.0  148804  [106 rows x 107 columns], cons_dict={'Durables': ['cmach', 'coman', 'ccons'], 'Energy and water': ['cmine', 'celec', 'cwatr'], 'Food': ['cmaiz', 'crice', 'cocer', 'coils', 'croot', 'cvege', 'csugr', 'ctoba', 'ccott', 'cfrui', 'ccoff', 'cocrp', 'ccatt', 'cpoul', 'coliv', 'cfore', 'cfish', 'cfood', 'cbeve'], 'Non-durables': ['ctext', 'cwood', 'cchem', 'cnmet', 'cmetl'], 'Services': ['ctrad', 'ctran', 'chotl', 'ccomm', 'cfsrv', 'creal', 'cbsrv', 'cpadm', 'ceduc', 'cheal', 'cosrv']}, prod_dict={'Agriculture and Fishing': ['amaiz', 'arice', 'aocer', 'aoils', 'aroot', 'avege', 'asugr', 'atoba', 'acoff', 'afrui', 'acoff', 'aocrp', 'acatt', 'apoul', 'aoliv', 'afore', 'afish'], 'Construction': ['acons'], 'Manufacturing': ['afood', 'abeve', 'atext', 'awood', 'achem', 'anmet', 'ametl', 'amach', 'aoman'], 'Mining': ['amine'], 'Services': ['ahotl', 'acomm', 'afsrv', 'areal', 'absrv', 'apadm', 'aeduc', 'aheal', 'aosrv'], 'Trade and Transport': ['atrad', 'atran'], 'Utilities': ['aelec', 'awatr']})[source]#

Calibrate the io_matrix array. This array relates the share of each production category in each consumption category

Parameters:
  • sam (pd.DataFrame) – SAM file

  • cons_dict (dict) – Dictionary of consumption categories

  • prod_dict (dict) – Dictionary of production categories

Returns:

Dataframe of io_matrix

Return type:

io_df (pd.DataFrame)