Source code for ogphl.input_output

import pandas as pd
import numpy as np
import os
from ogphl.constants import CONS_DICT, PROD_DICT


CUR_DIR = os.path.dirname(os.path.realpath(__file__))
"""
Read in Social Accounting Matrix (SAM) file
"""
# Read in SAM file
# SAM file:
sam_path = os.path.join(CUR_DIR, "data", "002_IFPRI_SAM_PHL_2018_SAM.csv")
SAM = pd.read_csv(sam_path, index_col=1, thousands=",")
# replace NaN with 0
SAM.fillna(0, inplace=True)


[docs] def get_alpha_c(sam=SAM, cons_dict=CONS_DICT): """ Calibrate the alpha_c vector, showing the shares of household expenditures for each consumption category Args: sam (pd.DataFrame): SAM file cons_dict (dict): Dictionary of consumption categories Returns: alpha_c (dict): Dictionary of shares of household expenditures """ hh_cols = [ "hhd-r1", "hhd-r2", "hhd-r3", "hhd-r4", "hhd-r5", "hhd-u1", "hhd-u2", "hhd-u3", "hhd-u4", "hhd-u5", ] alpha_c = {} overall_sum = 0 for key, value in cons_dict.items(): # note the subtraction of the row to focus on domestic consumption category_total = ( sam.loc[sam.index.isin(value), hh_cols].values.astype(float).sum() ) alpha_c[key] = category_total overall_sum += category_total for key, value in cons_dict.items(): alpha_c[key] = alpha_c[key] / overall_sum return alpha_c
[docs] def get_io_matrix(sam=SAM, cons_dict=CONS_DICT, prod_dict=PROD_DICT): """ Calibrate the io_matrix array. This array relates the share of each production category in each consumption category Args: sam (pd.DataFrame): SAM file cons_dict (dict): Dictionary of consumption categories prod_dict (dict): Dictionary of production categories Returns: io_df (pd.DataFrame): Dataframe of io_matrix """ # Create initial matrix as dataframe of 0's to fill in io_dict = {} for key in prod_dict.keys(): io_dict[key] = np.zeros(len(cons_dict.keys())) io_df = pd.DataFrame(io_dict, index=cons_dict.keys()) # Fill in the matrix # Note, each cell in the SAM represents a payment from the columns # account to the row account # (see https://www.un.org/en/development/desa/policy/capacity/presentations/manila/6_sam_mams_philippines.pdf) # We are thus going to take the consumption categories from rows and # the production categories from columns for ck, cv in cons_dict.items(): for pk, pv in prod_dict.items(): io_df.loc[io_df.index == ck, pk] = ( sam.loc[sam.index.isin(cv), pv].values.astype(float).sum() ) # change from levels to share (where each row sums to one) io_df = io_df.div(io_df.sum(axis=1), axis=0) return io_df