Overview	Demographics	Earnings	Supply Side	Macro	Future steps
00000	0000000000	000		o	oo

OG-PHL: Current Calibration

Jason DeBacker¹ Richard W. Evans²

¹University of South Carolina, Department of Economics

²Abundance Institute, Open Research Group, Inc.

August 12, 2024 United Nations, Philippines

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

00000

Demographics

Earnings

Supply Side

Macro o

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Future steps

OG-PHL

OG >---- PHL

OG-PHL is a calibration of the OG-Core model.

What it means for OG-PHL to be a "calibration" of OG-Core...

- OG-Core has all the underlying theory (e.g., different households, an arbitrary number of production sectors)
- But the parameters of the model are set to represent the Philippines economy
- E.g.,
 - The model matches Philippines' gini coefficient for the distribution of income
 - The size of production sectors represent the relative size in the Philippines economy
 - Policy parameters are set to represent Philippines' tax system

NOTE: Any of these parameters can be changed to represent a counter factual Philippines...

- OG-Core allows for arbitrary sizes in the various model dimensions. In OG-PHL, the defaults are:
 - Number of labor skill groups, J: 7
 - Representing the 0-25%, 25-50%, 50-70%, 70-80%, 80-90%, 90-99%, Top 1%
 - Age at which economically active, E: 20
 - Number of periods representing ages E to 100, S: 80
 - · With this, a model period represents one year
 - Number of model periods until assume reach steady-state, $T: 4 \times S = 320$
 - Note, it's helpful to make *T* a bit larger than you think it needs to be since you need the economy to settle down before this point, but only computational cost if set it too high

- Number of consumption goods, *I*: 1 (5)
- Number of production industries, *M*: 1 (7)

Overview	Demographics	Earnings	Supply Side	Macro	Future steps
ooooo	0000000000	000		o	oo
OG-PH	IL Calibratio	n			

- The following parameters have been calibrated specifically to Philippines:
 - Demographics
 - Lifetime earnings processes for heterogeneous households
 - · Firm production functions (labor share of output)
 - Household consumption parameters (expenditure shares on differentiated goods)
 - Input-output mapping between firm output and consumption categories
 - Macro parameters (long run growth rate, gov't interest rate haircut)

Overview	Demographics	Earnings	Supply Side	Macro	Future steps
oooo●	000000000	000		o	oo
	II. Calibratia	n			

OG-PHL Calibration

- Other parameters such as:
 - Household preference parameters
 - Elasticity of substitution between capital and labor
- Are set to standard values used in the literature, due to a lack of research (to our knowledge) on these parameters in the Philippines context

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Full documentation of the OG-PHL calibration: https://EAPD-DRB.github.io/OG-PHL/

Overview 00000	Demographics ●coccoococo	Earnings 000	Supply Side	Macro o	Future steps
	_				

OG-PHL Demographics

- Demographic parameters include:
 - Fertility rates by age
 - Mortality rates age
 - Age distribution of the population in an initial period
 - *Not* immigration (to ensure things add up, immigration computed as a residual)

• The UN World Population Prospects data provide all of these for most countries from present with forecasts through 2100!

Overview	Demographics	Earnings	Supply Side	Macro	Future steps
00000	oooooooooo	000		o	oo
Develo	i' Di com	• • •			

Population Dynamics

The population evolves according to the following laws of motion, where $\omega_{s,t}$ are the number of age *s* households at time *t*:

$$\omega_{1,t+1} = (1 - \rho_0) \sum_{s=1}^{E+S} f_s \omega_{s,t} + i_1 \omega_{1,t} \quad \forall t$$
$$\omega_{s+1,t+1} = (1 - \rho_s) \omega_{s,t} + i_{s+1} \omega_{s+1,t} \quad \forall t \text{ and } 1 \le s \le E + S - 1$$

- The age-specific fertility rates, *f_s*, mortality rates, *ρ_s*, and immigration rates, *i_s* affect the distribution each period
- Given that these rates are constant, the population distribution will converge to a steady-state distribution

Overview		Earnings	Supply Side	Macro	Future steps
	00000000				

Philippines: Fertility and Mortality

Source: United Nations, World Population Prospects

Fertility Rates

Source: United Nations, World Population Prospects

Mortality Rates

▲ロト ▲御 ト ▲ 恵 ト ▲ 恵 ト ● ④ ● ● ●

Overview		Earnings	Supply Side	Macro	Future
	000000000				

Philippines: Demographics, immigration rates

Demographics 000000000

Overview

Earning: 000 Supply Side

Macro o Future steps

Philippines: Demographics, pop. distribution

Overview 00000	Demographics oooooooooo	Earnings 000	Supply Side	Macro o	Future st

Compare to India: Demographics, pop. distribution

Overview		Earnings	Supply Side	Mac
	0000000000			

acro

Future steps

Compare to USA: Demographics, pop. distribution

Overview		Earnings	Supply Side	Macro	Futu
	0000000000				

Compare to South Africa: Demographics, pop. distribution

Overview		Earnings	Supply Side	Macro	Future steps
	0000000000				

Population Distribution Comparison

Philippines

United States

South Africa

Overview 00000	Demographics 000000000	Earnings 000	Supply Side	Macro o	Future steps

Demographics, pop. growth

Overview 00000	Demographics 0000000000	Earnings ●00	Supply Side	Macro ○	Future steps

Earnings Ability

- Households are heterogeneous earnings ability/effective labor units
 - There is a (endogenously determined) common wage rate per effective unit of labor, but households vary in the effective units of labor per unit of labor supply, giving rise to differences in hourly earnings

 $c_{j,s,t} + b_{j,s+1,t+1} = (1 + r_t)b_{j,s,t} + w_t e_{j,s}n_{j,s,t} + \dots$

- Earnings ability varies across households and over the lifecycle within a household
- There is no earnings risk: while earnings vary over the lifecycle, this process is completely deterministic
- Effective labor units are homogeneous from the point of view of firms
- No human capital accumulation decisions: earnings ability profiles are exogenous

Overview

Earnings o●o Supply Side

Macro o Future steps

Calibrating Lifetime Earnings Profiles

- Ideally, one can estimate the lifetime earnings profiles from microdata that represents a long panel of households (see e.g., Fullerton and Rogers (1993) or DeBacker et al. (2016))
- However, these data are often hard to come by
- We've therefore devised a reasonable approximation that requires only minimal data:
 - Begin with the earnings profiles for U.S. household estimated by DeBacker et al. (2016)
 - Using single parameter function, adjust the shape of the profiles for each earnings group to match the gini coefficient in Philippines

Demographics

Overview

Earning:

Supply Side

Macro o Future steps

OG-PHL Lifetime Earnings Profiles

Earnings Profiles, USA

Earnings Profiles, PHL

・ロト ・ 戸 ト ・ 日 ト ・ 日 ト

1

- Firm Production Technology
 - Use national accounts data to calibrate the firm production function:

$$\begin{aligned} Y_{m,t} &= \mathcal{F}(\mathcal{K}_{m,t}, \mathcal{K}_{g,m,t}, \mathcal{L}_{m,t}) \\ &\equiv Z_{m,t} \bigg[(\gamma_m)^{\frac{1}{\varepsilon_m}} (\mathcal{K}_{m,t})^{\frac{\varepsilon_m - 1}{\varepsilon_m}} + (\gamma_{g,m})^{\frac{1}{\varepsilon_m}} (\mathcal{K}_{g,m,t})^{\frac{\varepsilon_m - 1}{\varepsilon_m}} + \\ & (1 - \gamma_m - \gamma_{g,m})^{\frac{1}{\varepsilon_m}} (e^{g_y t} \mathcal{L}_{m,t})^{\frac{\varepsilon_m - 1}{\varepsilon_m}} \bigg]^{\frac{\varepsilon_m}{\varepsilon_m - 1}} \quad \forall m, t \end{aligned}$$

- Capital share of output: $\gamma_m = 0.588$
- Set $\varepsilon_m = 1.0$ for all sectors (Cobb-Douglas production)

Mapping Production Goods to Consumption Goods

Model households consume differentiated goods:

$$c_{j,s,t} \equiv \prod_{i=1}^{l} (c_{i,j,s,t} - c_{min,i})^{\alpha_i} \quad \forall j, s, t \quad \text{with} \quad \sum_{i=1}^{l} \alpha_i = 1$$

 Consumption goods are composites of production goods, determined via fixed proportions:

$$\tilde{p}_{i,t} = \sum_{m=1}^{M} \pi_{i,m} \tilde{p}_{m,t} \quad \forall i, t$$

Overview	Demographics	Earnings		Macro	Future steps
			00000		

Mapping Production Goods to Consumption Goods

- This leaves two parameter objects to calibrate:
 - 1 Household preferences (expenditure shares) over the differentiated production goods, α_i
 - 2 A matrix representing the shares of each output good in the composition of each consumption good, Π

Overview	Demographics	Earnings	Supply Side	Macro	Future steps
00000	000000000	000	ooo●o	⊙	
Data Ma Goods	pping Proc	duction G	oods to Co	onsumpti	ion

- Data for these are contained in standard "social accounting matrices" used in CGE modeling
- These are readily available for most countries from GTAP or other sources
- For the PHL calibration, we use data from the International Food Policy Research Institute

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

erv	ie	W	эw
oc			

Future steps

Calibration of IO Matrix and Consumption Shares

Consumption-Production Bridge Matrix

	Agr	Mining	Util	Cons.	Trade &	Serv	Manu
	& Fish				Trans		
Food	0.120	0.000	0.000	0.002	0.047	0.153	0.679
Energy & Extraction	0.005	0.009	0.113	0.057	0.066	0.206	0.543
Non-durables	0.023	0.013	0.012	0.315	0.130	0.183	0.323
Durables	0.004	0.005	0.013	0.048	0.067	0.120	0.743
Services	0.035	0.004	0.004	0.045	0.206	0.520	0.185

Consumption Expenditure Shares

Food	Energy	Non-durables	Durables	Services
Food	& Extraction			
0.357	0.014	0.021	0.103	0.505
			• • • •	

= nac

Macroeconomic parameters:

- Long run growth rate, g_y = 3.6% (growth in GDP per capita from 2000 to 2019)
- Initial period debt-to-GDP ratio, 60%
- Open economy parameters:
 - Initial percentage of debt held by foreigners, 14.6%
 - Percentage of newly issued debt purchased by foreigners, 14.6%
 - Openness of capital flow (0 to 1 scale), 0.9
- Government spending:
 - Non-pension transfers to GDP, 9.7%
 - Government consumption expenditures to GDP, 14.2%

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Overview	Demographics	Earnings	Supply Side	Macro	Future steps
00000	0000000000	000		o	●o
To con	າຍ.				

- More detail with tax and benefit system
- Match distribution of wealth
- Calibrate labor supply to match rates in Philippines
 - Note: model is of cohorts of agents, so unemployment not directly modeled, but we can get at it through, e.g., low labor supply of the young

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Overview 00000	Demographics 0000000000	Earnings 000	Supply Side	Macro o	FL

Matching labor supply, US Example

